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Abstract. When a quasi-partide current passes into II disordered superconductor, 
from ideal normal leads connected to external reservoirs, a finite electrical resistance 
Rs arises from scattering processes within the superconductor. A new formula for 
Rs is obtained, which reduces to the well-known Landauer formula in the absence of 
superconductivity. It &, k(T0,T.J are reflection (transmksion) coefficients associ- 
ated with nomnal and Andrcev scattering respectively, one finds, in one dimension 
at zero temperature, Rs = (h /Ze2)(& + T, t S)/(R. + To - 6) where 6 is a small  
parameter arising from the absence of inversion symmetry. Generalizations of this 
result to &rite temperat- and higher dimensions are also obtained. 

Whereas, in certain circumstances, there is competition between localization and su- 
perconductivity [l-31, this need not always be the case. Recently [4, 51, it has been 
demoustrated that quasi-particle excitations in short coherence length superconduc- 
tors can be localised by random spatial fluctuations in the order parameter A(r). This 
is a new mechanism for localization, since the disorder appears in the off-diagonal el- 
ements of the Bogoliubov-de Gennes (BG) equation, while for conventional Anderson 
localization Ihe disorder is restricted to diagonal terms in the BG operator. Since 
order parameter Rucluations can lead to enhanced Andreev scattering, one expects 
measurements of the bouudary resistance [6-91 between normal (N) and superconduct- 
ing (S) materials to yield important information about disorder-induced transitions. 
In such experiments, a quasi-particle penetrates deep into the superconductor before 
being reflected, either as a particle or hole, back into the normal material. The bound- 
ary resistance arises because in the penetration region, where conversion from normal 
current to supercurrent occurs, there may be a finite probability for reflection without 
conversion. 

In order to take advantage of measurements such as these, two items of theoretical 
machinery are needed. First, for a given model of disorder, techniques are needed 
for compnting the various reflection and transmission coefficients of, for example, 
NS, NSN or SNS junctions. For simple junctions with no disorder, this problem has 
been analysed by several authors [lo-131. In the presence of disorder [4, 51, the 
problem can be tackled numerically by taking advantage of a range of optimized 
techniques [14-181 developed to describe localization in normal solids. The second 
item of theoretical machinery is a formula for computiiig the boundary resistance R, 
froin known reflection and transmission coefficients. Remarkably, no such formula 
presently exists. Early work on N-S boundaries, based on the Boltzmann equation 
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[7, 81 suggests that 

Rs - l a / l o  (1) 

where I,(&,) is the scattering length for Andreev (normal) processes within the super- 
conductor. However such a formula, by its very nature, cannot adequately describe 
localization, where phase coherence can lead to substantial corrections to results ob- 
tained from Boltzmann-type arguments. 

The aim of this letter is to derive a general formula for R, in terms of reflection and 
transmission coefficients. For normal solids, the corresponding result is the Landauer 
formula [19-231, which has been used extensively during the past decade to investi- 
gate the effect of disorder on transport properties. in what follows a generalization 
of the Landauer approach is described. Initially, attention will be restricted to a zero 
temperature, onedimensional superconductor in the interval 0 < r < L and later the 
resulls will be generalized to finite temperatures and higher dimensions. Since a dis- 
ordered, oncdimensional superconductor cannot exist in nature, the one-dimensional 
analysis is aimed primarily a t  illustrating key ideas. I t  should he noted, however, that 
the results obtained in one dimension could be applied to simple models of layered ma- 
terials with a current normal to the layers and a random layer thickness. In this c ~ ,  
the transversc k-vector of an incoming quasi-particle is conserved and the problem is 
equivalent to that of many one-dimensional channels, conducting in parallel. 

Following Biittiker el a1 [23], long normal leads at  chemical potentials t iA and lie 
are altached to the left and right of the scattering region and these are in turn, attached 
to qiiasi-particle reservoirs a t  chemical potentials p l  and p2 (see figure 1). The leads 
are identical, perfect, one-dimensional conductors, whose chemical potentials must 
be chosen self-consistently to yield the correct electron density in the presence of a 
current I. In addition, in order to ensure quasi-particle charge conservation, it will 
be shown that Lhe chemical potential p of the superconductor must also be chosen 
selr-consistently. 

1) 
RESERVOIR 

I ,  >./ 
RESERVOIR 

figure 1. This sliows a superconductor of chemical potential p connectcd to perfect 
leads at dwuical potentids p~ and p ~ ,  which are themselves in contact wi th  reer- 
win at du”cal potentials p1 and pz. Parabolic, free electron energy bands in the: 
reservoirs are killed up to pi and p z .  The fig- shows these reflected about the line 
E = p to yield the quasi-partide p ic tw  appropriate to a superconductor. in this 
picture at zero temperature, all particle states in the left reservoir between p1 and p 
are filled, BS arc all hole states, in the right reservoir between ( p  - p 2 )  + p and p. 

The 4 x 4 S-matrix connecting incoming to outgoing quasi-particle amplitudes of 
a given energy E (measured relative to p ) ,  obtained by solving the unperturbed BG 
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equation, can be written as follows 

where r,r' and t,t' are 2 x 2 reflection and transmission matrices for quasi-particle 
amplitudes. The corresponding matrix for the reflection and transmission coefficients 
p(E)  connecting incoming to outgoing fluxes, formed by taking the modulus square of 
the elements of S and multiplying by the ratio of outgoing to incoming group velocities, 
is of the form [4] 

For a unit particle flux incident from the left, Rpp and Rhp are the reflected particle 
and hole fluxes respectively and TPtp and Th,p are the transmitted particle and hole 
fluxes. Column 2 of p contains tlie corresponding outgoing fluxes arising from a unit 
incident hole flux from the left, while columns 3 and 4 yield outgoing fluxes associated 
with incident particles and holes from the right. In general, the only constraints on the 
16 elements of p are those arising from the conservation of quasi-particle probability, 
which requires pij = E? pij = I. 

Following Buttiker el al b:], the reservoirs are taken to be incoherent sources of 
waves. At T = 0, with p1 > i t2 ,  particles with energies between p and pl are emitted 
from the left and holes with energies between p and p + ( p  - p 2 )  are emitted from the 
right. In the leads, the group velocities of particles and holes at E = 0 are equal to 
the Fermi velocity vF. IIence the current for two spin directions in the left lead is 

4 

I = ewFN(o){(pl - RPP + RhP) + ( p  -p2)(Thh' - 'Ph?)} (4) 

where N ( 0 )  is tlie density of stat~es per unit length in the leads for particles with 
positive velocity a t  E = 0. Since vFN(0) = 2/h ,  the prefactor in equation (4) is 
independent of the characterislics of the leads. 

To obtain an expression for the total resistance R, = ( p A  - p B ) / ( e l ) ,  expressions 
for the chemical potentials p A  and itB are needed. At equilibrium, pA and pB are 
related to the excess charge density in the leads through the equations 

2AV(0)bLA - /1) = N(0){ ( iL1  - I L ) ( I  - RhP + 'PP1 + ( p  - p2)(TPhJ - Thh')j ( 5 )  

and 

~ N ( O ) ( P B  - P) = N(o){(ih - /~)(TF'P - '&p) (6) 

where the factor of 2 on the left-hand sides arises because N ( 0 )  is the density of states 
for one velocity direction only. In writing down the right-hand sides, it has been noted 
that the charge of a hole IS equal and opposite to that of a parlicle. Combining these 
expressions yields 

( P  - P2)(-1 - R h w  + RPW)} 

PA - i l B  = (/I1 - it)(RPP + Th,P) + ( p  - k ) ( R h ' h '  + TPhr),  (7) 
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At this point one notes that, in the absence of particlehole scattering where Th,, = 
Tph, = 0 and Rpp = R,,,,, equation (7) reduces to pA - pg = Rpp(pl - p2) and 
equation (4) to I = (2e/h)Tpp,(pt -p2) .  Hence the difference p, -p2 can be eliminated 
to yield the well known Landauer formula [19, 201: & = (h/2e2)(Rpp/Tpp,). In the 
presence of particlehole scattering, to eliminate p from equations (4) and (7), an 
additional condition is required. To proceed further, it is crucial to recognize that the 
quasi-particle charge is not automatically a conserved quantity. Consider for example 
the effect of the incident particle current from the left. The difference between the 
incident and outgoing currents is 

64,fi = evFN(o)(pi - p)[1 - (%P - RhP + TPfP - Thip)] 

= e'-'FN(o)(Pi - P ) ~ ( % P  + Th'p). 

Similarly for the hole current from the right 

'&ght = evFN(o)(p - /k?)(-2)(RP,hl + TPh'). 

Since, at equilibrium, the charge on the superconductor remains constant, we require 
+ siright = 0. Hence the equilibrium value of p must satisfy (R,,,, + Tph,)(p - 

/ I , )  = (Rhp + Th,p)(pl - p).  Combining this with equation (7) yields expressions for 
p - p2 and pl - p  in terms of pA -pB which, when inserted into equation (4), yields 
an expression for the dimensionless resistance ?? = Rs/(h/2ez) of the form 
- 
R = [Rpp + Thtp + a(Rh,h, + Tph#)]/[l - Rpp + Rhp + w(Thh0 - Tph,)] ( 8 4  

where o = (Rhp + ThJP)/(Rpfh, + Tpht). 
This general result is simplified at  T = 0 where only states at E = 0 contribute. 

A t  this energy, particlehole symmetry requires that the elements of p ( 0 )  are invari- 
ant under an interchange of indices P ++ h,  P' - h'. Furthermore, if the unper- 
turbed system is invariant under time reversal, p i j  = p j i .  In the presence of these 
symmetriest, equation (8) is simplified by introducing average normal and Andreev 
reflection coefficients R, = (Rpp + Rp,p,)/2 and R, = (Rhp + Rh,P,)/2. Introducing 
the corresponding transmission coefficients To = Tpp,,T, = Thp, and a parameter 
6 = (Rhp - Rh,p,)Z/2(Rhp + R,,,, + 2TJ, which characterizes the spatial asymmetry 
of the system, yields 

- R , + T , + 6  R =  
R, + To - 6 '  

I n  general, 6 # 0 because a disordered system lacks inversion symmetry. 
These exprcssions for ?? reveal, in a transparent manner, several key properties of 

N-S-N junctions. In the absence of superconductivity, when the Andreev reflection 
and transmission coefficients R,,T, vanish, 6 = 0 and equation (86) reduces to the 
Landauer formula in one dimension. For an infinite system with spatial fluctuations 
in  the order parameter A(r )  only, to quasi-classical accuracy, R, = 1 and all other 
coefficients vanish [4]. Hence in this case, = 0. More generally, in the presence 

t With these symmetries there are only four distinct reflection coefficients Rpp (= R h h ) ,  Rph (= 
Rhp), Rptp, (= Rhlh)  and Rpthc (= Rh'p,) and two distinct transmissioncoefXcimts Tptp (= Tppr = 
T h h ,  = T h ~ h )  and Thrp (= Tpth = Tph, = Thp,), 
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of both diagonal and off-diagonal disorder, the Coefficients on the right-hand side of 
equations ( 8 )  must be evaluated through detailed calculations based on specific models. 
It is interesting to note that equation (Sa) can be written in the form2 = xlen +Right, 
where the left and right boundary resistances are defined to be Rright = (2e/h)(pA - 
p ) / I  and zlen = (Ze/h)(p - p B ) / I .  Using equations (4) to (6), these expressions are 
readily evaluated to yield 

- 1 Rpp + a  + b  - 1 RhCh, +a' + b' 
= - 2 Rhp + a  - b and R k h t  = 5 RP,h, + - b! 

where a = (Tprp + Th,P)/2r b = (Tph, - Thh,)a/2 and a' = (TPh, + Thh,)/2, b' = 
(Th,pTTp,p)/2a. As expected, Right is obtained fromx,,, by making the interchange 
of indices P c) h', h U P'. These, expressions are particularly useful in the long 
wire limit L + 00, where all transmission coefficients vanish. In this case, RI,, = 
Rp,/2Rhp and Rright = Rh,,,/2RP,,, , which represent generalizations of equation (1) 
to the case where phase coherence is preserved during scattering processes within the 
superconductor. 

This analysis is readily generalized to finite temperatures. Provided the temper- 
ature is much less than the Fermi temperature, small differences in the particle and 
hole group velocities can be ignored and the density of states can be taken outside 
the energy integrals. Since particles and holes are now emitted from both reservoirs 
writing e& = p l  - p ,  ed2 = p - p2, yields for the current 

I = 

- 

m 

d E  {f(E - e h ) [ l -  Rpp + &PI f (E-  e'$2)[Thh' -TPhel 

4- f(E -I +)[-I - Rp11 + Rhh1 + f(E e'$2)[ThP' - TPP,]} (9) 

where f is the Fermi function. Similarly, writing e$A = pA - p and = p - pB, 
the requirements that pA and pB produce the correct equilibrium charge densities in 
the leads, yields 
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The further requirement that at equilibrium the charge on the superconductor remains 
constant yields 

dE - e&)[RPlht + TPW] 

- f(E + e42)[RhJp, + Thp’II. (11) 
To obtain an expression for the resistance 3, equations (9) to (11) must be linearized 
in the voltages. To write down the general result, it is convenient to introduce the 
quantities ( p t }  = ( ( p i j )  + ( p k , ) ) / 2 ,  where angular brackets denote an average value 
given by 

This yields 

- 
R= (RSk) + (T$>) + E[(R$$’) + (T@)] 

1 - (Rkb) + (RE#) + ?i[(Tfr) - (T‘hql)] 

where E = ((R$$) + (T#;,’))/((R$i) + (T;:,’)). 
For temperatures much lower than the transition temperature T,t the general- 

ization of equation (Sb) ,  obtained by imposing time-reversal symmetry and ignoring 
small corrections due to the breaking of particlehole symmetry at E # 0, is found to 
be 

where 6 = ((RhP) - (Rh,p,))2/2((Rhp) + (RhOPt) + 2(T,)) and dl other quantities are 
averaged values of their counterparts in equation (8b) .  

The generalization to more than one dimension is also achieved through the in- 
troduction of suitably defined averages. In this case, for both particles and holes, the 
leads possess N independent incoming and outgoing channels, corresponding to N 
discrete transverse k vectors of the incoming or outgoing waves. The 16 elements of 
p(E) are now each replaced by N x N matrices. The waves in different channels are 
assumed to be incoherent so that the interference between the separate channels can 
be neglected. Since the product of the group velocity and density of states for a given 
channel is channel independent, one finds (cf equation (4)) that at zero temperature, 
the current in the jth channel is 

t Since the mallest energy scale for variations of the matrix elements p i ,  is typically b T c ,  terms 
neglected by ignoring particle-hole asymmetry are of order TIT, comp-d to unity. 
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Hence the total current in the left lead is 

where d,, = N-' Cjk(Rpp)jk etc. 
Similarly, since the inverse group velocity in the j t h  channel is (h/2)Nj(0), where 

Ni(0) is the density of states in channel j ,  the particle density in the j t h  channel of 
t6e left lead is 

Summing over all j and combining the result with a corresponding equation for the 
right lead, shows that equation (7) generalizes to 

P A  - PB = (PI - - RhP + RPP + ThJp - Fpplp)/2 

+ ( f i  - rz)(l - k p h f  + kh,h? + Tph, - ?hhf)/z 

where a ~ represents a sum over all channels, weighted by the density of states. For 
example Rpp = [Ejk Nj(0)(Rp,)jk]/[~j Nj(0)]. Furthermore charge conservation 
yields 

(RPlh3 + FPh8)(P - PZ) = ('hP + 'h,P)(Pl - (14) 

At this stage, it is useful to introduce 4 x 4 matrices ,5 and 6, formed by re- 
placing the elements on the right-hand side of equation (3) with their ^or "averages. 
Conservation of quasi-particle probabilty then yields E:=l ,jij = 1, which was used 
in simplifying equation (14). On the other hand, there is no such condition on ,5. 
Consequently, the expression for p A  - pB does not simplify and the generalization of 
equation (8a) takes the more cumbersome form 

where 6 = (l?hp+?h,p)/(i?plhr +iph,). In the presence of time reversal and particle- 
hole symmetry this result takes a form similar to that of equation (86): 
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where the quantities cp and ch,, which would vanish if the channel dependence of 
Nj(0) were ignored, are given by 

Z€p = (-Rhp + Rpp + PhtP - YPth) - (-khP + Epp + ThtP - TPPh) 

and 

2<h, = (-&ht + &h, +fppV -?htht) - (-RpFh! f 8h4h# +fppV - fh8hn). 

This result is readily generalized to finite temperatures. Through a simple extension 
of the arguments leading to equation (lo), the finite temperature version of equa- 
tion (12b) is again obtained by replacing all reflection and transmission coefficients by 
their average, defined in equation (12). 

The aim of this letter has been to obtain an expression for the boundary resistance 
of an N-S-N sample, in terms of the reflection and transmission coefficients, which 
reduces to the Landauer formula in the absence of Andreev scattering. The one- 
dimensional, zero temperature result is contained in equations (Sa) and (Sb) ,  with 
extensions to finite temperatures and higher dimensions contained in equations (13) 
and (15 ) .  The analysis closely follows that of Biittiker et d [ 2 3 ] ,  except that  in order to 
maintain a constant quasi-particle charge, an additional self-consistency relationship 
has been introduced, which fixes the chemical potential of the superconductor. I t  
should be noted that the formulae obtained do not depend on the nature of the 
superconductivity, except through the implicit assumption that at sufficiently low 
temperatures, inelastic processes are negligible. For this reason, the results should 
apply to heavy fermion, high T, and conventional superconductors. The analysis used 
to derive these results is rather general. For example, corresponding formulae for 
the alternative resistance, defined as the ratio of the reservoir potential difference 
p L  -p2 to the current I, are trivially obtained from the equations between (4) and ( 6 )  
and their multi-channel, finite temperature counterparts. This alternative choice may 
be relevant to certain measurements on mesoscopic structures, such as hybrid rings 
[24] and to recent experiments [25] on superconducting-magnetic interfaces. To avoid 
repetition, the formulae have not been explicitly written down. It  should also be noted 
that equations (8) and the corresponding equations for R,en and Rright, disagree with 
a similar result by Blonder e l  01 [13], who do not treat the chemical potentials of the 
leads self-consistently and consequently obtain a result which does not reduce to the 
Landauer formula in the normal limit. 

Historically, our understanding of Anderson localization has benefited greatly from 
calculations based on the Landauer formula for the resistance of normal disordered 
solids. As a basis for understanding corrections to the Boltzmann description of quasi- 
particle transport in inhomogeneous superconductors, one expects the formulae ob- 
tained in this letter to play an equally significant role. With a view to investigating the 
inter-play between diagonal and off-diagonal disorder in the BG equation, calculations 
extending the work of Hui and Lambert [3, 41 are currently underway and explicit 
results for based on these formulae will be reported in the near future. 
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